
🖼 EXPLORE THE
WONDERS OF A. DAVIS
ART MUSEUM 🖼

CS4620 | CS5620
Fall 2024

Final Project

JOANNA YOO (SY797), LIAN LIAO (LL987),
ANDREW YANG (ACY46), ZHENG WANG
(ZW724)



Table of Contents

1
Project Overview &
Design/Development Process 2

3
4
5

Core Gameplay Mechanics

Technical Features

Contribution Map (Summary)

How to Run &
Asset List



Visual Enhancement
Terrain texture
Skyview

Particle Systems
User Reaction

Andrew Zheng

Page 1

Summary (Contribution Map)

Joanna

Character Control/ Camera
Movement

Character Rotation
Camera Zoom/Movement

Object/Character Interaction
Artwork Visibility Based on
Proximity

Lian

Together
Collaborated on concept development, ensuring a unified vision for the project.
Engaged in constant debugging and made minor improvements across various features.
Provided support to each other when stuck on challenging issues.
Attended all meetings promptly, contributing to regular progress updates and planning.

Character Control/ Camera
Movement

Smooth Character Movement
Camera Follow

Object/Character Interaction
Dynamic Artwork Descriptions



Sprint 1 Sprint 3

Implemented camera control
and character movement
features

Object &
Character
Interaction

Testing & Final
Refinements

Added particle effects for
player's reactions and worked
on terrain shaders and the
skymap.

Our team developed a virtual museum simulation where Finn, the character from
Adventure Time, explores various artworks on the map. The simulation includes features
such as artwork becoming visible only when within range, similar to how objects in real
life come into view as you approach them. Players can also see artwork information when
near a piece, much like reading placards in an actual museum. Additional details include a
particle system to express the player's reaction to artworks, textures and shaders
designed to mimic the holistic vibe of a museum, and smooth player interactions
achieved through interpolation. These elements combine to create an engaging and
immersive museum experience.

Project Overview

Design & Development Process

Sprint
Planning

Sprint 2 Sprint 4

Defined the game concept,
core mechanics, and scope

Camera Control &
Character
Movement

Particle System
& Visual

Enhancement 

Implemented features for
displaying artwork descriptions
and added transparency effects

Gathered feedback from
teammates, polished the game,
and resolved bugs to ensure a
seamless and engaging user
experience.

Our team followed the Agile methodology for the project design and development process. In each sprint, we
held regular meetings to incorporate feedback and ensure that each phase focused on incremental
improvements. Continuous refinement was a key aspect of our approach, allowing us to build and enhance
the game step by step. We also emphasized collaboration across team members to ensure that all features,
from character movement mechanics to visual details, were well-integrated and met the project objectives.
This iterative process allowed us to maintain flexibility and deliver a polished final product.

Page 2



R- Zoom in

W and S: Move the user forward
and backward
A and D: Rotate the user left and
right

Core Movement Mechanics
(Note: All key inputs are case-insensitive.)

Keyboard Components

Page 3

F- Zoom out

Mouse Control

U- 👍 Thumbs Up Reaction

I- 😍 “I love it!” Reaction

O- 🙁 “I don’t like this” Reaction

The user can control the
camera view by dragging the
mouse.



Technical Features

Page 4

Character Control/ Camera Movement (Joanna & Lian)

Character Rotation: Added functionality to rotate the character left or right using 4D matrix
transformations, enhancing navigation and control. Updates included revising the
HasPosition3D interface to include attributes like orientation and targetPosition in addition to
position. (Joanna)
Smooth Movement: Utilized interpolation to ensure the character's movement transitions are
smooth, avoiding any choppiness (Lian)
Camera Zoom and Movement: Integrated a basic zoom feature along with camera movement
controls for an enhanced player view (Joanna)
Camera Follow: Implemented a dynamic camera system that tracks and follows the character
during movement (Lian)

Object/Character Interaction (Joanna & Lian)

Dynamic Artwork Descriptions: When the character moves within a specified range of an
artwork, a corresponding description dynamically appears at the top of the UI screen, providing
detailed information about the artwork (Lian)
Artwork Visibility Based on Proximity: All artworks are transparent by default, enhancing focus
on the environment. An artwork becomes opaque and fully visible only when the character is
within the specified proximity range, creating an interactive and immersive experience. The
opacity control was custom-developed and integrated into the existing demoshader.glsl,
dynamically adjusting transparency based on the character's distance. (Joanna)

Particle Systems (Andrew)

User Reaction: The particle systems were implemented to respond dynamically to user
reactions. Each interaction triggers unique properties, including varying speeds, shapes, and
behaviors, creating an engaging and visually immersive experience tailored to the user's input.

Visual Enhancement (Zheng)

Terrain Texture: The terrain texture was modified to a mirror-like surface using enhancements
in the terrain.glsl shader. By integrating the Blinn-Phong lighting model with reflection and
Fresnel effects, the floor dynamically responds to light and viewing angles. Normal mapping
adds subtle surface detail, while customizable parameters like brightness and reflection
intensity allow for fine-tuning. This creates a refined, realistic environment perfect for a museum
setting
Skyview: The HDRI was converted to a cubemap format for precise six-sided texturing (px, nx,
py, ny, pz, nz), ensuring a seamless sky environment. Exposure levels were carefully adjusted
to harmonize with the reflective floor and overall lighting, creating a balanced and cohesive
visual experience. 



Asset List

1. Ensure that the project is set up with the correct import for the example base. In
MainApp.tsx, uncomment the following line:
import AppClasses from "./FinalProject/ExampleApps/Example1";

2. Verify that the interactionMode is set to "ExamplePlayer" in the relevant configuration.

These steps ensure the application runs correctly based on our implementation. 😊

Most of our implementations are located in the FinalProject-StarterCode and
FinalProject-Example1 directories. Key features are also implemented in shader files
such as demoshader.glsl and terrain.glsl, as referenced on page 4. Dynamic interaction
logic is primarily handled in the GUIHelpers.tsx file. While there may be a few additional
functions or minor components outside these locations, the majority of the work can be
found in the mentioned files and directories.

Finn Character
https://www.turbosquid.com/3d-models/finn-the-human-1296287

Nubian Woman Sculpture
https://www.turbosquid.com/3d-models/handmade-nubian-figurine-3d-model-1835192

Venus de Milo
https://free3d.com/3d-model/statue-v1--541832.html

The Thinker
https://free3d.com/3d-model/the-thinker-v3--850984.html

Meditating Buddha
https://free3d.com/3d-model/statue-v1--856385.html

Page 5

How to Run


